If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-18x=16
We move all terms to the left:
x^2-18x-(16)=0
a = 1; b = -18; c = -16;
Δ = b2-4ac
Δ = -182-4·1·(-16)
Δ = 388
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{388}=\sqrt{4*97}=\sqrt{4}*\sqrt{97}=2\sqrt{97}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{97}}{2*1}=\frac{18-2\sqrt{97}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{97}}{2*1}=\frac{18+2\sqrt{97}}{2} $
| 305/5x=10 | | 2=n-13/2 | | 1(3-6b)=6b+5 | | 8x-(3x-12)=34 | | 4.8(4+2x)=-16 | | 5-q=3 | | 2x+1/2x=27.5 | | g+-8g+-9=12 | | -14-8x=-2(-3x7) | | 5z-8=2z-8 | | F(n)=4-3n | | -4/v=2 | | -6-3q=-4q | | 20b-11b-5=13 | | 12r-4r+1=9 | | 5x(30-24)2÷4=0 | | 3b+2=38 | | 9g+44=90 | | 9+2k=3k | | 1/3(6x-5)=1/3-2(x+1) | | 8p-6=5 | | 6(4x+5)=-30+8x | | 22-8x=-66 | | (4g-6)+90=(8g)+(9g+44) | | 18-x/7=15 | | 1/3x-15=x-5 | | 4=12/u | | 3(v-4)=5v-24 | | 18.8x-4.7x=68.8 | | 14x-5+5x+14=180 | | 2s+7=115 | | 2n-1=49 |